LOCAL RESILIENCE STRATEGIES FOR COVID19 – A PBL ENGINEERING CASE STUDY

LOCAL RESILIENCE STRATEGIES FOR COVID19 – A PBL ENGINEERING CASE STUDY

A. Winkens, C. Leicht-Scholten (2022).  LOCAL RESILIENCE STRATEGIES FOR COVID19 – A PBL ENGINEERING CASE STUDY. 174-188.

The increasing relevance of uncertainty and complexity provides ongoing and future challenges for engineers. Subsequently, engineers require competencies such as systems thinking, judgement and decision-making in the face of uncertainty or complex problem solving as part of their education. Already, these are part of e.g. the ABET and EUR-ACE standards and  the CDIO syllabus. This aligns with emerging trends in engineering education, such as student-centred, active learning and problem-project-based learning (PBL). The aim of this paper is to present a seminar teaching concept and to examine to what extent scenario planning combined with active, PBL and collaborative learning can enable engineering students to develop resilience strategies. Here, resilience describes a system’s ability to cope with sudden disturbances by adapting and learning, and resilience strategies represent the ability to design such resilient systems. Based on theoretical concepts of resilience, students had to apply these to a concrete and current problem. Following a PBL approach, an open and ill defined problem was the starting point for a scenario planning project, where the students had to develop a resilience strategy with regard to the COVID-19 pandemic at a local level. The seminar aimed at developing competencies in resilience thinking and systems thinking. Findings showed that the teaching concept successfully enhanced especially these competencies which are characterized by a high level of complexity, such as reflection, analysis and assessment of resilience-related issues.

Authors (New): 
Ann-Kristin Winkens
Carmen Leicht-Scholten
Pages: 
174-188
Affiliations: 
RWTH Aachen University, Aachen, Germany
Keywords: 
Resilience
Complexity
Scenario Planning
PBL
Active learning
CDIO Standard 8
CDIO Standard 11
Year: 
2022
Reference: 
ABET. (2021). ABET, Criteria for Accrediting Engineering Programs. Retrieved from https://www.abet.org/wp-content/uploads/2021/02/E001-21-22-EAC-Criteria.pdf: 
Amer, M., Daim, T. U., & Jetter, A. (2013). A review of scenario planning. Futures, 46, (pp. 23–40).: 
10.1016/j.futures.2012.10.003
Ban, N. C., Boyd, E., Cox, M., Meek, C. L., Schoon, M., & Villamayor-Tomas, S. (2015). Linking classroom learning and research to advance ideas about social -ecological resilience. Ecology and Society, 20(3),: 
10.5751/ES-07517-200335
Berkes, F. (2017). Environmental Governance for the Anthropocene? Social-Ecological Systems, Resilience, and Collaborative Learning. Sustainability, 9(7),: 
10.3390/su9071232
Biggs, J., & Tang, C. (2011). Teaching for quality learning at university (4th ed.). Maidenhead, UK: Open University Press.: 
Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals. New York: David McKay Company.: 
Cariolet, J.-M., Vuillet, M., & Diab, Y. (2019). Mapping urban resilience to disasters – A review. Sustainable Cities and Society, 51,: 
10.1016/j.scs.2019.101746
Carpenter, S., Arrow, K., Barrett, S., Biggs, R., Brock, W., Crépin, A. -S., Engström, G., Folke, C., Hughes, T., Kautsky, N., Li, C.-Z., McCarney, G., Meng, K., Mäler, K.-G., Polasky, S., Scheffer, M., Shogren, J., Sterner, T., Vincent, J., Walker, B., Xepapadeas, A., & Zeeuw, A. (2012). General Resilience to Cope with Extreme Events. Sustainability, 4(12), (pp. 3248–3259).: 
10.3390/su4123248
Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From Metaphor to Measurement: Resilience of What to What? Ecosystems, 4(8), (pp. 765–781).: 
10.1007/s10021-001-0045-9
Chen, J., Kolmos, A., & Du, X. (2021). Forms of implementation and challenges of PBL in engineering education: a review of literature. European Journal of Engineering Education, 46(1), (pp. 90–115).: 
10.1080/03043797.2020.1718615
Chittoori, B., Salzman, N., Hamilton, R., Mishra, D., & Miller, S. M. (2020). Incorporating sustainability and resiliency content into civil engineering undergraduate curriculum. 2020 ASEE Virtual Annual Conference.: 
Contreras, S., Niles, S., Roudbari, S., Harrison, J., & Kaminsky, J. (2020). Bridging the praxis of hazards and development with resilience: A case study of an engineering education program. International Journal of Disaster Risk Reduction, 42,: 
10.1016/j.ijdrr.2019.101347
Verordnung zum Schutz vor Neuinfizierungen mit dem Coronavirus SARS-CoV-2 (Coronaschutzverordnung – CoronaSchVO), March 2021 C.F.R. (2021).: 
Crawley, E., Malmqvist, J., Lucas, W., & Brodeur, D. (2011). The CDIO Syllabus v2.0. An Updated Statement of Goals for Engineering Education. 7th International CDIO Conference: Proceedings of the 7th International CDIO Conference. Copenhagen, Denmark: Technical University of Copenhagen.: 
Crawley, E., Malmqvist, J., Östlund, S., Brodeur, D., & Edström, K. (2014). Rethinking Engineering Education. The CDIO Approach (Second Edition ed.). Switzerland: Springer.: 
de Graaff, E., & Kolmos, A. (2003). Characteristics of Problem-Based Learning. International Journal of Engineering Education, 19(5), (pp. 657–662).: 
Dryhurst, S., Schneider, C. R., Kerr, J., Freeman, A. L. J., Recchia, G., van der Bles, A. M., Spiegelhalter, D., & van der Linden, S. (2020). Risk perceptions of COVID-19 around the world. Journal of Risk Research, 23(7–8), (pp. 994–1006).: 
10.1080/13669877.2020.1758193
Dubois, B., & Krasny, M. E. (2016). Educating with resilience in mind: Addressing climate change in post-Sandy New York City. The Journal of Environmental Education, 47(4), (pp. 255–270).: 
10.1080/00958964.2016.1167004
Edmondson, V., & Sherratt, F. (2022). Engineering judgement in undergraduate structural design education: enhancing learning with failure case studies. European Journal of Engineering Education, (pp. 1-14).: 
10.1080/03043797.2022.2036704
Edström, K., & Kolmos, A. (2014). PBL and CDIO: complementary models for engineering education development. European Journal of Engineering Education, 39(5), (pp. 539–555).: 
10.1080/03043797.2014.895703
ENAEE. (2021). EUR-ACE® Framework Standards and Guidelines (4th November 2021 ed.). Brussels, Belgium.: 
Evans, C. (2013). Making Sense of Assessment Feedback in Higher Education. Review of Educational Research, 83(1), (pp. 70–120).: 
10.3102/0034654312474350
Fazey, I. (2010). Resilience and Higher Order Thinking. Ecology and Society, 15(3),: 
Felder, R. M., & Brent, R. (2016). Teaching and Learning STEM: A Practical Guide. San Francisco, CA: Jossey-Bass.: 
Folke, C. (2006). Resilience: The emergence of a perspective for soci al–ecological systems analyses. Global Environmental Change, 16(3), (pp. 253–267).: 
10.1016/j.gloenvcha.2006.04.002
Francis, R., & Bekera, B. (2014). A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliability Engineering & System Safety, 121, (pp. 90–103).: 
10.1016/j.ress.2013.07.004
Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences of the USA, 111(23), (pp. 8410–8415).: 
10.1073/pnas.1319030111
Goldberg, D., Somerville, M., & Whitney, C. (2019). A Whole New Engineer. The Coming Revolution in Engineering Education. Michigan: ThreeJoy Associates, Inc.: 
Hadgraft, R. G., & Kolmos, A. (2020). Emerging learning environments in engineering education. Australasian Journal of Engineering Education, 25(1), (pp. 3–16).: 
10.1080/22054952.2020.1713522
Hollnagel, E. (2014). Resilience engineering and the built environment. Building Research & Information, 42(2), (pp. 221–228).: 
10.1080/09613218.2014.862607
Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48(4), (pp. 63-85).: 
10.1007/BF02300500
Kharrazi, A., Kudo, S., & Allasiw, D. (2018). Addressing Misconceptions to the Concept of Resilience in Environmental Education. Sustainability, 10(12),: 
10.3390/su10124682
Krasny, M., & Tidball, K. (2009). Applying a resilience systems framework to urban environmental education. Environmental Education Research, 15(4), (pp. 465–482).: 
10.1080/13504620903003290
Levin, S. A., Anderies, J. M., Adger, N., Barrett, S., Bennett, E. M., Cardenas, J. C., Carpenter, S. R., Crepin, A. S., Ehrlich, P., Fischer, J., Folke, C., Kautsky, N., Kling, C., Nyborg, K., Polasky, S., Scheffer, M., Segerson, K., Shogren, J., van den Bergh, J., Walker, B., Weber, E. U., & Wilen, J. (2021). Governance in the Face of Extreme Events: Lessons from Evolutionary Processes for Structuring Interventions, and the Need to Go Beyond. Ecosystems, (pp. 1–15).: 
10.1007/s10021- 021-00680-2
Lundholm, C., & Plummer, R. (2010). Resilience and learning: a conspectus for environmental education. Environmental Education Research, 16(5–6), (pp. 475–491).: 
10.1080/13504622.2010.505421
Malmqvist, J., Edström, K., & Rosén, A. (2020). CDIO Standards 3.0 – Updates to the Core CDIO Standards. The 16th International CDIO Conference: Proceedings of the 16th International CDIO Conference (pp. 60–76). Gothenburg, Sweden: Chalmers University of Technology (online).: 
Malmqvist, J., Kohn Rådberg, K., & Lundqvist, U. (2015). Comparative analysis of challenge-based learning experiences. 11th International CDIO Conference: Proceedings of the 11th International CDIO Conference. Chengdu, Sichuan, P.R. China: Chengdu University of Information Technology.: 
Meerow, S., Newell, J. P., & Stults, M. (2016). Defining urban resilience: A review. Landscape and Urban Planning, 147, (pp. 38–49).: 
10.1016/j.landurbplan.2015.11.011
Nielsen, L., & Havbro Faber, M. (2021). Toward an information theoretic ontology of risk, resilience and sustainability and a blueprint for education– Part I. Sustainable and Resilient Infrastructure, (pp. 1–21).: 
10.1080/23789689.2021.1937775
Park, J., Seager, T. P., Rao, P. S., Convertino, M., & Linkov, I. (2013). Integrating risk and resilience approaches to catastrophe management in engineering systems. Risk Analysis, 33(3), (pp. 356–367).: 
10.1111/j.1539-6924.2012.01885.x
Pearson, J., Punzo, G., Mayfield, M., Brighty, G., Parsons, A., Collins, P., Jeavons, S., & Tagg, A. (2018). Flood resilience: consolidating knowledge between and within critical infrastructure sectors. Environment Systems and Decisions, 38(3), (pp. 318-329).: 
10.1007/s10669-018-9709-2
Peterson, G. D., Cumming, G. S., & Carpenter, S. R. (2003). Scenario Planning: a Tool for Conservation in an Uncertain World. Conservation Biology, 17(2), (pp. 358–366).: 
10.1046/j.1523- 1739.2003.01491.x
Plummer, R. (2010). Social–ecological resilience and environmental education: synopsis, application, implications. Environmental Education Research, 16(5–6), (pp. 493–509).: 
10.1080/13504622.2010.505423
Prince, M. J. (2004). Does Active Learning Work? A Review of the Research. Journal of Engineering Education, 93(3), (pp. 223–231).: 
10.1002/j.2168-9830.2004.tb00809.x
Prince, M. J., & Felder, R. M. (2006). Inductive Teaching and Learning Methods: Definitions, Comparisons, and Research Bases. Journal of Engineering Education, 95(2), (pp. 123–138).: 
10.1061/(ASCE)EI.2643-9115.0000056
van der Heijden, K. (2005). Scenarios: The Art of Strategic Conversation (2nd Edition ed.): John Wiley & Sons Ltd.: 
Walker, B. (2020). Resilience: what it is and is not. Ecology and Society, 25(2),: 
10.5751/es-11647- 250211
Walker, B., & Salt, D. (2006). Resilience thinking. Sustaining Ecosystems and People in a Changing World. Washington, DC: Island Press.: 
Winkens, A., & Leicht-Scholten, C. (2021). Resilience as a key competence in engineering education – development of a conceptual framework. SEFI 49th Annual Conference 2021: Blended Learning in Engineering Education: challenging, enlightening – and lasting? (pp. 628–636). Berlin, Germany: TU Berlin (online).: 
Go to top
randomness