LEARNING MECHATRONICS USING DIGITAL LIVE LABS

LEARNING MECHATRONICS USING DIGITAL LIVE LABS

V. Olesen, C. Stöhr, M. Enelund, J. Malmqvist (2022).  LEARNING MECHATRONICS USING DIGITAL LIVE LABS. 831-847.

Practical skills training in laboratories are important elements and learning outcomes in engineering education, where leaners, through exploration, experimentation and reflection engage in inquiry-based learning that stimulate the acquisition of deep conceptual domain knowledge and inquiry skills. Traditional lab environments are very costly to maintain, partly unsafe and often require proximity of instructors and/or students that is in conflict with the Covid-19-driven need for physical/social distancing. In this paper, we describe and evaluate a course in logic control that used online labs both in pure online and in hybrid format. Students reported very high satisfaction with all three formats and achieved similar learning performances. However, qualitative analyses indicate that student learning is deeper and more authentic in the on-campus and hybrid formats compared to the pure online format. Teacher reflections show an overall positive impression of online labs. In conclusion, we recommend the hybrid format as it combines the benefits of online and physical labs, i.e., the flexibility of online laboratory work and realism of hands-on physical laboratory work.

Authors (New): 
Veronica Olesen
Christian Stöhr
Mikael Enelund
Johan Malmqvist
Pages: 
831-847
Affiliations: 
Chalmers University of Technology, Sweden
Keywords: 
Online learning
Online labs
Digital live labs
Hybrid teaching
Logic control
CDIO Standard 5
CDIO Standard 6
CDIO Standard 8
Year: 
2022
Reference: 
Acton, C., Miller, R., Maltby, J., & Fullerton, M. D. (2009). SPSS for Social Scientists. New York, NY: Macmillan International Higher Education.: 
Bewick, V., Cheek, L., & Ball, J. (2005). Statistics review 14: Logistic Regression. Critical Care, 9(1), 112.: 
https://doi.org/10.1186/cc3045
Braun, V., & Clarke, V. (2012). Thematic analysis. In H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA Handbook of Research Methods in Psychology, Vol. 2. Research Designs: Quantitative, Qualitative, Neuropsychological, and Biological. American Psychological Association, 67-71.: 
https://doi.org/10.1037/13620-004
Brinson, J. R. (2015). Learning Outcome Achievement in Non-traditional (Virtual and Remote) versus Traditional (Hands-on) Laboratories: A Review of the Empirical Research. Computers & Education, 87, 218–237.: 
https://doi.org/10.1016/j.compedu.2015.07.003
Chalmers University of Technology. (2021). Logic Control, https://www.student.chalmers.se/sp/course?course_id=32446, retrieved on December 10th, 2021.: 
Chen, X., Song, G., & Zhang, Y. (2010). Virtual and Remote Laboratory Development: A review. In Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments, 3843–3852.: 
Cleff, T. (2019). Applied Statistics and Multivariate Data Analysis for Business and Economics: A Modern Approach Using SPSS, Stata, and Excel. Cham, Switzerland: Springer.: 
Codesys. (2022, January 10th). Retrived from https://www.codesys.com/: 
MPLABX. (2022, January 10th) Retrived from https://www.microchip.com/en-us/toolsresources/ develop/mplab-x-ide#: 
Tinkercad. (2022, January 10th). Retrieved from https://www.tinkercad.com/: 
Corter, J. E., Esche, S. K., Chassapis, C., Ma, J., & Nickerson, J. V. (2011). Process and Learning Outcomes from Remotely-operated, Simulated, and Hands-on Student Laboratories. Computers & Education, 57(3), 2054–2067.: 
https://doi.org/10.1016/j.compedu.2011.04.009
Corter, J. E., Nickerson, J. V., Esche, S. K., Chassapis, C., Im, S., & Ma, J. (2007). Constructing Reality: A study of Remote, Hands-on, and Simulated Laboratories. ACM Transactions on Computer- Human Interaction, 14(2), 7-es.: 
https://doi.org/10.1145/1275511.1275513
de Jong, T., Sotiriou, S., & Gillet, D. (2014). Innovations in STEM Education: The Go-Lab Federation of Online Labs. Smart Learning Environments, 1(1), 3.: 
https://doi.org/10.1186/s40561-014-0003-6
Enneking, K. M., Breitenstein, G. R., Coleman, A. F., Reeves, J. H., Wang, Y., & Grove, N. P. (2019). The Evaluation of a Hybrid, General Chemistry Laboratory Curriculum: Impact on Students’ Cognitive, Affective, and Psychomotor Learning. Journal of Chemical Education, 96(6), 1058–1067.: 
https://doi.org/10.1021/acs.jchemed.8b00637
Gamage, K. A. A., Wijesuriya, D. I., Ekanayake, S. Y., Rennie, A. E. W., Lambert, C. G., & Gunawardhana, N. (2020). Online Delivery of Teaching and Laboratory Practices: Continuity of University Programmes during COVID-19 Pandemic. Education Sciences, 10(10), 291.: 
https://doi.org/10.3390/educsci10100291
Henke, K., Ostendorff, St., Wuttke, H.-D., & Simon, St. (2013). Fields of Applications for Hybrid Online Labs. 2013 10th International Conference on Remote Engineering and Virtual Instrumentation (REV) , 1–8.: 
https://doi.org/10.1109/REV.2013.6502899
Hofstein, A., & Lunetta, V. N. (2004). The Laboratory in Science Education: Foundations for the Twenty-first Century. Science Education, 88(1), 28–54.: 
https://doi.org/10.1002/sce.10106
Lei, Z., Zhou, H., Hu, W., Deng, Q., Zhou, D., Liu, Z.-W., & Lai, J. (2018). Modular Web-Based Interactive Hybrid Laboratory Framework for Research and Education. IEEE Access, 6, 20152–20163.: 
https://doi.org/10.1109/ACCESS.2018.2821713
Lynch, T., & Ghergulescu, I. (2017). Review of Virtual Labs as the Emerging Technologies for Teaching STEM subjects. INTED2017 Proc. 11th Int. Technol. Educ. Dev. Conf. 6-8 March Valencia Spain, 6082–6091.: 
Nedic, Z., Machotka, J., & Nafalski, A. (2003). Remote Laboratories versus Virtual and Real Laboratories. 33rd Annual Frontiers in Education, 2003. FIE 2003., 1, T3E-T3E.: 
https://doi.org/10.1109/FIE.2003.1263343
Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V. M., & Jovanović, K. (2016). Virtual Laboratories for Education in Science, Technology, and Engineering: A Review. Computers & Education, 95, 309–327.: 
https://doi.org/10.1016/j.compedu.2016.02.002
Post, L. S., Guo, P., Saab, N., & Admiraal, W. (2019). Effects of Remote Labs on Cognitive, Behavioral, and Affective Learning Outcomes in Higher Education. Computers & Education, 140, 103596.: 
https://doi.org/10.1016/j.compedu.2019.103596
Rodriguez-Gil, L., García-Zubia, J., Orduña, P., & López-de-Ipiña, D. (2017). Towards New Multiplatform Hybrid Online Laboratory Models. IEEE Transactions on Learning Technologies, 10(3), 318–330.: 
https://doi.org/10.1109/TLT.2016.2591953
Sheckler, R. K. (2003). Virtual labs: A Substitute for Traditional Labs? International Journal of Developmental Biology, 47(2–3), 231–236.: 
https://doi.org/10.1387/ijdb.12705675
Sicker, D. C., Lookabaugh, T., Santos, J., & Barnes, F. (2005). Assessing the Effectiveness of Remote Networking Laboratories. Proceedings Frontiers in Education 35th Annual Conference, S3F-S3F.: 
https://doi.org/10.1109/FIE.2005.1612279
Stöhr, C., Demazière, C., & Adawi, T. (2020). The Polarizing Effect of the Online Flipped Classroom. Computers & Education, 147, 103789.: 
https://doi.org/10.1016/j.compedu.2019.103789
Wang, J., Guo, D., & Jou, M. (2015). A study on the Effects of Model-based Inquiry Pedagogy on Students’ Inquiry Skills in a Virtual Physics Lab. Computers in Human Behavior, 49, 658–669.: 
https://doi.org/10.1016/j.chb.2015.01.043
Zhu, J. (2010). A Hybrid Online-education Strategy for Delivering Engineering and Technology Courses. 2010 International Conference on Networking and Digital Society, 2, 448–451.: 
https://doi.org/10.1109/ICNDS.2010.5479464
Go to top