ODIO at ISEP and Portuguese O Engineering Organizations INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO

ENSINO SUPERIOR PÚBLICO WWW.ISEP.IPP.PT

> Antonio Costa Dep. of Informatics Engineering

> > CDIO Meeting at UPC 23-25 June 2009

About ISEP

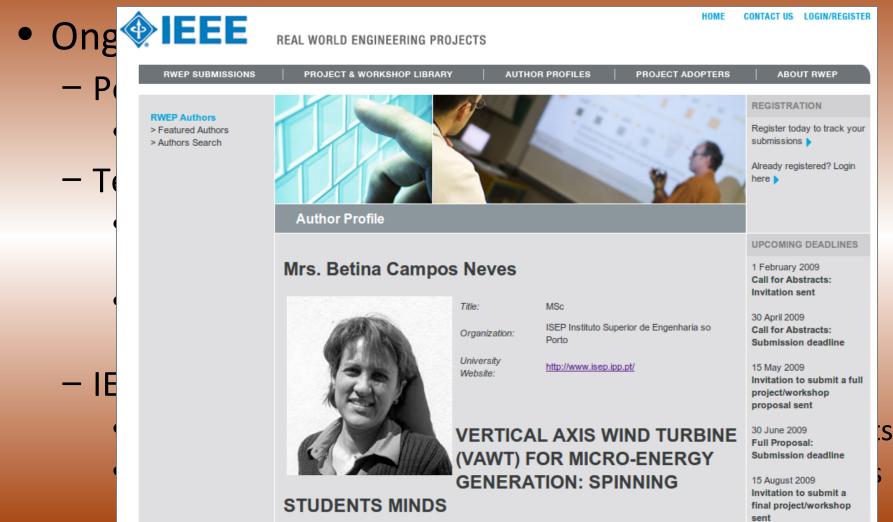
- 150 years old engineering school
 - Located in Porto (2nd largest city in Portugal)
 - Largest Portuguese polytechnic engineering school
 - 9 Bachelor degrees and 5 Masters (Bologna 3+2)
 - 6000 students, 450 faculty and staff
 - Research and professionally oriented teachers
 - 4 nationally accredited R&D groups
 - Integrated in Porto Polytechnic (16000 students)

CDIO at ISEP (I)

- The Bologna transition at ISEP
 - Degree reformulation work started in 2003
 - ISEP envisioned common math and physics courses, integrative courses in all semesters, increase of practical / hands-on classes, professionally oriented project capstones, outcome orientation, etc
 - National laws published in 2006 (revised in 2008)
 - CDIO adoption proposed in July 2006
 - Bologna 1st cycles transition started in 2006-07

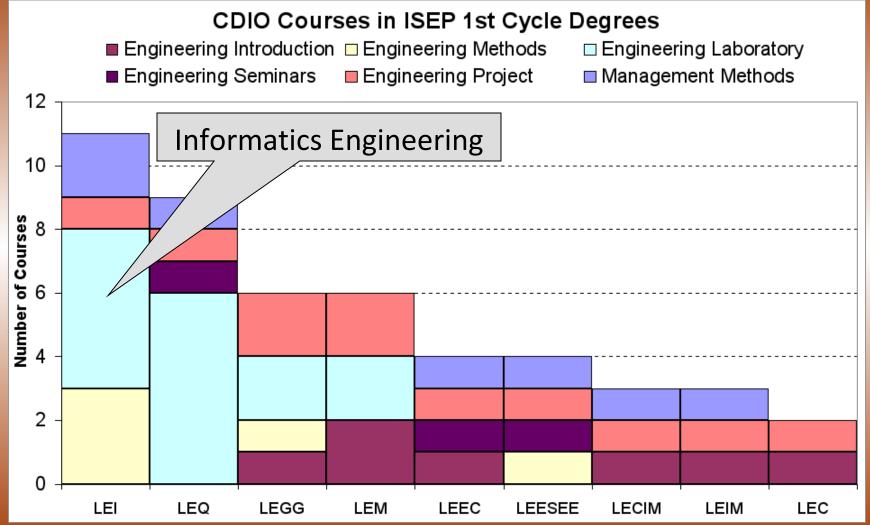
CDIO at ISEP (II)

- 1st Cycle changes and CDIO principles/standards
 - Introductory engineering courses in all degrees
 - Workspaces / labs available in all degrees
 - Lots of problem / project based curricular work
 - Many extra curricular recognized activities available
 - Active learning is largely dominant in classes
 - Periodic project based teamwork in many degrees
 - Capstone "professional" project in all degrees
 - Student integration into R&D units of ISEP, etc



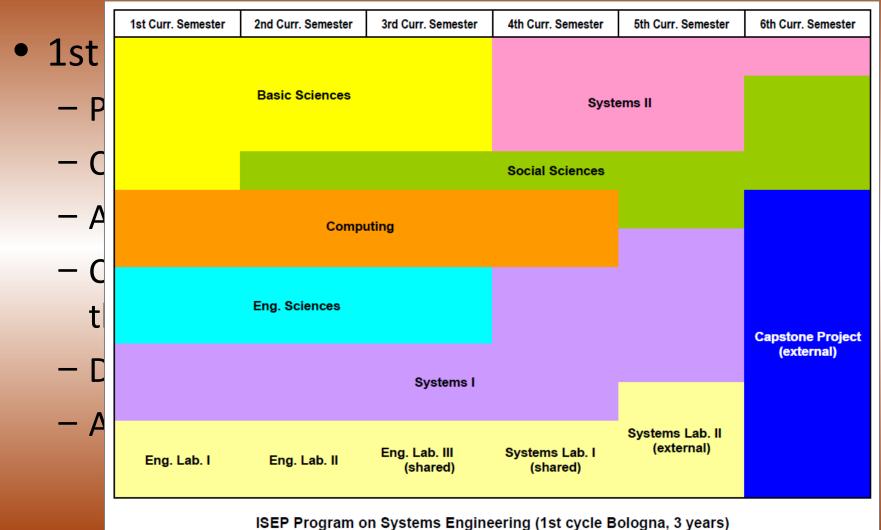
CDIO at ISEP (III)

- Ongoing support initiatives at ISEP
 - Pedagogical support group
 - Focus on pedagogical support to educational activities
 - Technological support group
 - Promote the use of complementary (technological) educational resources by faculty
 - Motivate and encourage students for alternative and more pro-active learning processes
 - IEEE Real-World Engineering Projects
 - Hands-on team-based "real" projects for 1st year students
 - Self-study workshops for improving pedagogical practice


CDIO at ISEP (III)

6

CDIO at ISEP (IV)



CDIO at ISEP (V)

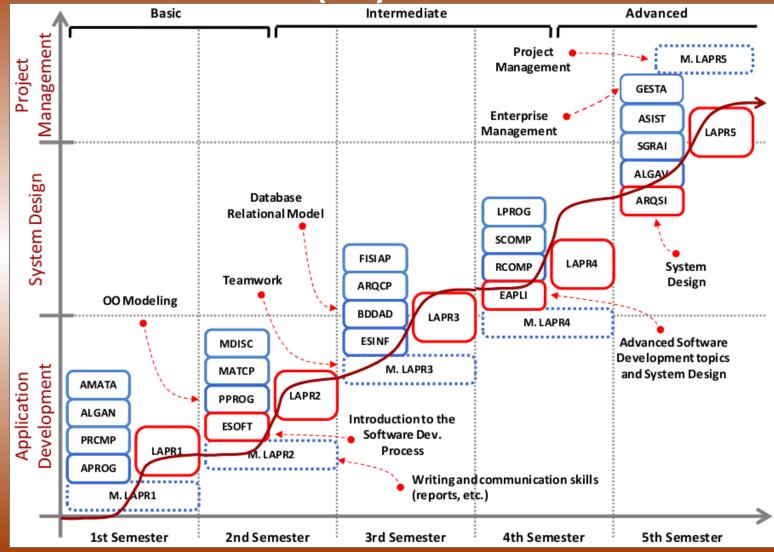
- 1st Cycle degree on "Systems Engineering"
 - Proposed by a team leaded by CDIO supporters
 - Conceived by ISEP & AEP (entrepreneurs association)
 - A true multidisciplinary engineering 1st cycle
 - CDIO principles and practices were used in creating the study plan, curricular content, projects, etc
 - Designed for a small number of selected students
 - Authorized by the Ministry of HE in May 2009

CDIO at ISEP (V)

Jun 2009

CDIO at LEI-ISEP (I)

- The Bologna transition at Informatics Eng. Dep.
 - Informatics Eng. Dep. started reformulation in 2002
 - Based on ACM Computing Curricula Reports (CS'01, CE'04, IS'02, SE'04, **OR'05**) e Career Space guidelines
 - CDIO was adopted in 2005 and soon became very helpful
 - 1st Cycle Informatics Eng. (LEI) Syllabus
 - Started by a group of 5 people in June 2007
 - The first LEI draft syllabus made available in Sep. 2007
 - Department accepted LEI syllabus produced in May 2008
 - Syllabus section 1.2 inspired in ACM CC OR'05 (rev. 2006)


CDIO at LEI-ISEP (II)

- The 1st Cycle on Informatics Engineering (LEI)
 - The backbone is Software Development Process
 - Adopted an integrated model / process orientation
 - Based on a customisable and extensible framework
 - For iterative and incremental system development
 - Key differentiator for its graduates and faculty
 - Since 2006-07 already showing interesting results
 - Increase on number of candidates (global and 1st choice)
 - Increase on faculty involvement, training and cohesion

Jun 2009

CDIO at LEI-ISEP (III)

12

CDIO at LEI-ISEP (IV)

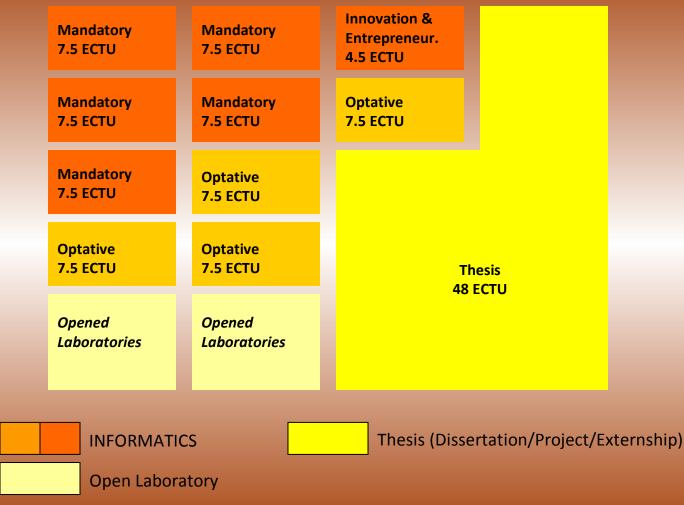
- The 1st Cycle on Informatics Engineering (LEI)
 - Semesters 1 to 5 [inspired by the DTU experience]
 - 12 weeks for classical courses with "continuous" evaluation and a final written exam (40-60% grading)
 - 4 weeks in a laboratorial hands-on course for developing a significant project with growing complexity and realism
 - Semester 6
 - Scientific / professionally oriented capstone project
 - Much more proposals than students (240/130 in 2008-09)
 - 85% of students choose externally proposed projects

CDIO at LEI-ISEP (V)

Mat. Anal 5 ECTU	ysis	Discrete Mat. 5 ECTU	Applied Phys. 5 ECTU	Comp. Netw. 6 ECTU	Management 4 ECTU	1	3	
Algebra 5 ECTU			Comp. Arch. 5 ECTU	Comp. Sist. 6 ECTU	Sist. Admin. 5 ECTU			
					Adv. Algorit. 5 ECTU			
Algor. & Prog. 6 ECTU		Prog. Paradig. 6 ECTU	Inform. Struc. 6 ECTU	Lang. & Prog. 6 ECTU	Gr. Sist. & Int. 5 ECTU		Capstone Project 18 ECTU	
Comp. Princ. 6 ECTU		Software Eng. 6 ECTU	Databases 6 ECTU	Applic. Eng. 6 ECTU	Sist. Arch. 5 ECTU			
Lab./P 8 ECTL Person Team	al Skills	Lab./Proj. II 8 ECTU Linguist. Skills Team Work	Lab./Proj. III 8 ECTU Group Skills Team Work	Lab./Proj. IV 6 ECTU Ethics & Laws Team Work	Lab./Proj. V 6 ECTU Profess. Skills Team Work			
SCIENCES		INFO			Capstone Project			
MANAGEMENT		Lab./	Lab./Project		1 – Artificial Intel. (4 ECTU) 2 – Advanced Comp. (4 ECTU) 3 – Organiz. Behaviour (4 ECTU)			

CDIO at LEI-ISEP (VI)

LEI Syllabus Questionnaire					
1	TECHNICAL KNOWLEDGE AND REASONING				
1.1	KNOWLEDGE OF UNDERLYING SCIENCES				
1.2	CORE ENGINEERING FUNDAMENTAL KNOWLEDGE				
1.3	ADVANCED ENGINEERING FUNDAMENTAL KNOWLEDGE				
2	PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES				
2.1	ENGINEERING REASONING AND PROBLEM SOLVING				
2.2	EXPERIMENTATION AND KNOWLEDGE DISCOVERY				
2.3	SYSTEM THINKING				
2.4	PERSONAL SKILLS AND ATTITUDES				
2.5	PROFESSIONAL SKILLS AND ATTITUDES				
3	INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION				
3.1	TEAMWORK				
3.2	COMMUNICATIONS				
3.3	COMMUNICATIONS IN FOREIGN LANGUAGES				
4	CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS				
4.1	ENTERPRISE AND SOCIETAL CONTEXT		2		
4.2	CONCEIVING AND ENGINEERING SYSTEMS	Proficiency index	2		
4.3	DESIGNING	2 – Application	2		
4.4	IMPLEMENTING	3 – Analysis	3		
4.5	OPERATING		2		



CDIO at LEI-ISEP (VII)

	CDIO Standards Implementation at LEI-ISEP	
1	The Context	3
2	Learning Outcomes	2
3	Integrated Curriculum	3
4	Introduction to Engineering	3
5	Design-Implement Experiences	4
6	Engineering Workspace	3
7	Integrated Learning Experiences	3
8	Active Learning	2
9	Enhancement of Faculty Skills Competence	0
10	Enhancement of Faculty Teaching Competence	1
11	Learning Assessment	2
12	Program Evaluation	1

CDIO at LEI-ISEP (VIII)

CDIO at other Portuguese Orgs

- Portuguese Engineers Association (OE)
 - Quality Assessment To Award the EUR-ACE Label
 - A quality evaluation system for 2nd cycle degrees (MSc)
 - EUR-ACE, ABET and CDIO as sectoral frameworks
 - CDIO Syllabus Reports (2002) and ABET Criteria (2009) mentioned as relevant documents for good evaluation
 - 4 MSc university degrees have the OE+EUR-ACE label
 - ISEP will soon apply for the OE+EUR-ACE label on all five Bach+MSc programs as a first step for the national agency mandatory accreditation

Capstone European Projects

- Areas for ISEP
 - Informatics, Electrotechnical, Mechanical, Chemical, Geotechnics, Biomedical Engineering 1st cycles
- Proposal from ISEP
 - Joint development of an advanced website for the CDIO Southern/Central Europe group

ODIO at ISEP and Portuguese O Engineering Organizations INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO

ENSINO SUPERIOR PÚBLICO WWW.ISEP.IPP.PT

> Antonio Costa Dep. of Informatics Engineering

> > CDIO Meeting at UPC 23-25 June 2009