

Introducing a Design-build experience

Overall project aims

- Practice collaboration and project management (Concurrent engineering)
- Apply theory from courses in Machine Elements and Manufacturing Engineering
- Gain insight and understanding on how to use design and analysis methods throughout the product realization process
- Practice oral and written communication skills
- Utilize projects from industry

The Design Process

The purpose

The process

Scope

	Activity	Method/Tool	Purpose/aim	Tutoring			
1	Problem definition	Handouts	Define project purpose and aims				
2	Project planning	Gantt chart	Identify project steps, time and resource planning				
3	Requirement specification	Freddy Olssons matrix Checklist - Pugh's Design Core Information search	ist - Pugh's Design Core Measurable criteria				
4	Functional analysis	Blackbox	Identify main function and subfunctions				
5	Idea generation	Brainstorming	Find/create solutions for subfunctions	•			
6	Idea selection	Handouts	Reject solutions that cannot be realized or that are not safe				
7	Idea systematization	Classification scheme	Create additional solutions	2			
8	Combination of partial solutions	Morfological matrix	Document sub-solutions and combine these into system solution	_			
9	Further development of selected concepts	Handouts	Develop the concepts to a similar degree of detail				
10	Evaluation 1	Pugh's relative decision matrix	Identify strengths and weaknesses wrt the criteria				
11	Concept refinement	Handouts	Improve concepts wrt minus (-) scores				
12	Evaluation 2	Pugh's relative decision matrix (choose new reference)	Select 3-4 concepts for futher development	4			
13	Prototype manufacturing	Select one concept for prototype manufacturing	ProE CAD modelling Manufacture one prototype variant	•			
14	Analysis of prototype	Handouts	Analyse function and requirements fulfillment				
15	Sel of manufacturing process, cost estimation	SWIFT	Redesign concepts for manufacturing	6			
16	Evaluation 3	Concept scoring + Kesselring	Selection of final concept				
17	Further development of the selected concept	Handouts	Detaila dimensions, tolerances, materials selection etc.	7			
18	Documentation and presentation	Handouts, course memo	Dokumentation of working process and final design	8			

Prototype build - purpose

- Physical/geometric verification of the concept solution
- Verify requirements fulfillment
- Functional analysis
- DFM DFA
- Form Aestethics Feel
- Identify weaknesses/improvements

Prototype

Select concept for prototype manufacturing

Koncept	1	2	3	4	5	6	7	8	9
Kriterie									
A	+	0	+	R	+	-	+	-	+
В	0	-	0	E			0	+	•
C	+	+	0	· F	• 0	+	0	+	•
D	•	-	-	E	0	-	0	-	•
E	+	+	-	R	+	-	+	-	+
F	+	0	+	E	+	0	0	0	0
\sum +	4	2	2	N	3	1	2	2	2
Σ-	1	2	2	S	1	4	0	3	3
$\sum 0$	1	2	2	6	2	1	4	1	1
Tot. ∑	3	0	0	0	2	-3	2	-1	-1
Placering	1	3	3	3	2	5	2	4	4

CAD modeling (ProE)

Manufacturing

SLA, SLS (CARAN)

Analysis

Function and requirements fulfillment

Project assignment

- All projects were from industry
 - Added realism and motivation

- Passenger car handle (Volvo Car Corp)
- Fan valve for airfreight container (Envirotainer)
- Adjustable bracket for radio link antenna (Viking Microwave)

Adjustable bracket for radio link antenna

Results from prototype manufacturing

- Total 71 pcs
- SLA & SLS

"Full" prototypes were built by adding standard parts

Reflections

Positive reactions from the students

- "it's was fun with physical feedback"
- "realistic and meaningful motivating"
- "oops ... it didn't work"
- "the physical prototype made it easier to find weaknesses and come up with improvements"
- "deeper understanding of the function",

• Teacher:

- more motivated students
- industry relevance, deadlines, milestones, deliverables
- more work
- reasonable cost (5 700 USD for 71 "prototypes")

Future

- Plan to run the project with similar scope next year
- Improved student design-build facilities through the prototyping lab
- Continued collaboration with CARAN
- Carefully selected project assignments